

Analysis of thermal energy harvesting using ferromagnetic materials

Liuqing Wang, Mickaël Lallart, Lionel Petit

INSA de Lyon, France

EH Network, 9th May 2018

Analysis of thermal energy harvesting using ferromagnetic materials
Analysis of thermal energy harvesting using ferromagnetic materials 2. Analysis of thermal energy harvesting using ferromaged in the system of the system of the system of the system alysis of thermal energy harvesting using ferromagnetic m
1. Principle and setup
2. Analysis of the system
3. Results and discussion alysis of thermal energy harvesting using ferroma
1. Principle and setup
2. Analysis of the system
3. Results and discussion
4. Summary

1. Principle and setup
2. Analysis of the system
3. Results and discussion
4. Summary

Setup

- INSA
To combine these two couplings
 \bullet A piece of ferromagnetic material is **INSA**
To combine these two couplings
 \bullet A piece of ferromagnetic material is
attached to a U-shape ferrite **INSA INSA CONTRANSA CONTRANSA CONTRANSA CONTRANSA A piece of ferromagnetic material is**
attached to a U-shape ferrite
U-shape ferrite is the magnetic core of a coil To combine these two couplings
 \triangleq A piece of ferromagnetic material is

attached to a U-shape ferrite
 \triangleq U-shape ferrite is the magnetic core of a coil
 \triangleq This system is placed in an external magnetic
-
- To combine these two couplings
 \bullet A piece of ferromagnetic material is

attached to a U-shape ferrite
 \bullet U-shape ferrite is the magnetic core of a coil
 \bullet This system is placed in an external magnetic

field field materials \mathbf{f}_{rel}

Analysis

Analysis

INS

Analysis Harvesting cycle
Field – permanent magnet

Analysis Harvesting cycle
Field – permanent magnet
External magnetic field is
provided by permanent magnets

When the ferromagnetic material is **heated**

Analysis Harvesting cycle
Rield – permanent magnet

Analysis

Influence of $\frac{dT}{dt}$ on generated voltage $rac{dT}{dt}$ on generated voltage

anal to variation velocity of the temperature

Analysis Influence of $\frac{dT}{dt}$ on generated voltage
The generated voltage is proportional to variation velocity of
Same temperature decrease
in 0.5 s, 0.8 s,...,5 s
Approximately the same change in $\bigotimes_{t=1}^{336}$ **The generated voltage is proportional to variation velocity of the temperature**

Same temperature decrease

Same temperature decrease

in 0.5 s, 0.8 s,…,5 s

$$
V = -\frac{d\phi}{dt}
$$

Analysis Influence of ΔT on generated voltage

 $\begin{array}{c}\n\text{It is that the value of the function $\mathbf{r}_1(\mathbf{x})$ is proportional to temperature}\n\text{variation }\Delta T = T_{max} - T_{min}\n\end{array}$ **INSA**

ated voltage

The generated voltage is

proportional to temperature

variation $\Delta T = T_{max} - T_{min}$

Large **temperature variation** variation $\Delta T = T_{max} - T_{min}$ The generated voltage is

proportional to temperature

variation $\Delta T = T_{max} - T_{min}$

Large **temperature variation**

Large **permeability variation** The generated voltage is
proportional to temperature
variation $\Delta T = T_{max} - T_{min}$
Large **temperature variation**
Large **permeability variation**
Significant **magnetic flux**
variation The generated voltage is
proportional to temperature
variation $\Delta T = T_{max} - T_{min}$
Large **temperature variation**
Large **permeability variation**
Significant **magnetic flux**
variation The generated voltage is
proportional to temperature
variation $\Delta T = T_{max} - T_{min}$
Large **temperature variation**
Large **permeability variation**
Significant **magnetic flux**
variation
High generated voltage

variation

Results

Temperature decreased from $20^{\circ}C$ to -
 $40^{\circ}C$ in $1 \sim 3$ s
For a set of resistive loads from 1 to 100 M Ω 40˚C in 1~3 s Femperature decreased from 20°C to -
40°C in 1~3 s
For a set of resistive loads from 1 to 100 M Ω
The maximum power is approximately 7×10^{-7} W Temperature decreased from 20°C to -
40°C in 1~3 s
For a set of resistive loads from 1 to 100 MΩ
The maximum power is approximately 7×10^{-7} W
 \times Theoretically, there is an optimal resistance

- Temperature decreased from 20°C to -
40°C in 1~3 s
For a set of resistive loads from 1 to 100 MΩ
The maximum power is approximately 7×10^{-7} W
 \triangleright Theoretically, there is an optimal resistance
 R_{opt} quite small t mperature decreased **from 20°C to** -
 °C in 1~3 s

r a set of resistive loads from 1 to 100 M Ω

e maximum power is approximately 7×10^{-7} W

Theoretically, there is an optimal resistance
 R_{opt} – quite small to o
- Temperature decreased **from 20°C to** -

40°C in 1~3 s

For a set of resistive loads from 1 to 100 MΩ

The maximum power is approximately 7×10^{-7} W

> Theoretically, there is an optimal resistance
 R_{opt} quite sma mperature decreased **from 20°C to** -

[•]**C in 1~3 s**
 r a set of resistive loads from 1 to 100 MΩ
 e maximum power is approximately 7×10^{-7} W
 Theoretically, there is an optimal resistance
 R_{opt} – quite small optimal value **40[°]C in 1~3 s**

For a set of resistive loads from 1 to 100 MΩ

The maximum power is approximately 7×10^{-7} W
 \triangleright Theoretically, there is an optimal resistance
 R_{opt} – quite small to optimize the power.
 \triangleright For a set of resistive loads from 1 to 100 MΩ

The maximum power is approximately 7×10^{-7} W
 \geq Theoretically, there is an optimal resistance
 R_{opt} – quite small to optimize the power.
 \geq In experiment, we di

Discussion

Discussion

Discussion

7 Internal magnetic energy

7 Coupling energy

Thermomagnetic coupling

Thermomagnetic coupling

Choose a ferromagnetic

material with high

permeability variation

around T_c 7 Internal magnetic energy

7 Coupling energy

Thermomagnetic coupling

Thermomagnetic coupling
 \downarrow Choose

Choose a ferromagnetic

material with high

permeability variation

around T_c permeability variation around T_c

 Internal magnetic energy Coupling energy Magnetization of external field
Remanent field of permanent magnet Magnetization of external field
Remanent field of permanent magnet
Choose magnets with high remanent Magnetization of external field

Remanent field of permanent magnet

Choose magnets with high remanent

field B_r (e.g. rare-earth magnets)
 $\frac{1}{2}$ ¹⁵ Exation of external field

ant field of permanent magnet

magnets with high remanent

(e.g. rare-earth magnets) Thermomagnetic coupling

field B_r (e.g. rare-earth magnets)

Summary

