

Analysis of thermal energy harvesting using ferromagnetic materials

Liuqing Wang, Mickaël Lallart, Lionel Petit

INSA de Lyon, France

EH Network, 9th May 2018

Analysis of thermal energy harvesting using ferromagnetic materials

1. Principle and setup

2. Analysis of the system

3. Results and discussion

4. Summary

EH Network, 9th May 2018

Setup

To combine these two couplings

- A piece of ferromagnetic material is attached to a U-shape ferrite
- U-shape ferrite is the magnetic core of a coil
- This system is placed in an external magnetic field

Analysis

5

6

INS

Field – permanent magnet

External magnetic field is provided by permanent magnets

When the ferromagnetic material is **heated**

Field – permanent magnet

Analysis

Influence of $\frac{dT}{dt}$ on generated voltage

The generated voltage is proportional to variation velocity of the temperature

Same temperature decrease

in 0.5 s, 0.8 s,...,5 s

Approximately the same change in magnetic flux

For different variation velocity

$$V = -\frac{d\phi}{dt}$$

The faster the temperature decreases, the higher the voltage is generated

EH Network, 9th May 2018 10

Analysis Influence of ΔT on generated voltage

The generated voltage is proportional to temperature variation $\Delta T = T_{max} - T_{min}$

Large temperature variation

Large **permeability variation**

Significant **magnetic flux variation**

High generated voltage

Results

Temperature decreased **from 20°C to -40°C in 1~3 s**

For a set of resistive loads from 1 to 100 $M\Omega$

The maximum power is approximately 7×10^{-7} W

- > Theoretically, there is an optimal resistance R_{opt} quite small to optimize the power.
- In experiment, we did not succeed as the internal losses are already more than this optimal value

<u>However, even with this optimal resistance</u>, the harvested power is <u>less than 10^{-5} W</u>

Discussion

No matter how the temperature varies, <u>the harvested energy</u> is from **the coupling energy** and **internal magnetic energy**.

Discussion

7 Internal magnetic energy

↗ Coupling energy

Thermomagnetic coupling

Choose a ferromagnetic material with high permeability variation around T_C

Magnetization of external field Remanent field of permanent magnet

Choose magnets with high remanent field B_r (e.g. rare-earth magnets)

Summary

To harvest **thermal** energy with **ferromagnetic** materials

