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Inertial Harvesters

 Mass mounted on a spring within a frame

* Frame attached to moving “host” (person, machine...)
* Host motion vibrates internal mass

« Internal transducer extracts power
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Available Power from Inertial Harvesters

assume:
« source motion amplitude Y, and frequency o
* Proof mass m, max internal displacement z,
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« Peak force on proof mass F =ma = mae?Y,
« Damper force < F or no movement

« Maximum work per transit W = Fz, = mo?Y,z,

* Maximum power P=2W/I/T = m®3YOZO/7T
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Implications for Scaling

«  Maximum power P=mon3Y.z,/m
* For length dimension L, m scales as L3

« Z,scalesasL

« So power scales as L*

 Power density falls as size reduces
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How much power is this?
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Plot assumes:
«  Siproof mass (higher densities possible)

* max source acceleration 1g (determines Y, for any f)
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Achievable Power Relative to Applications
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Possible Power Relative to Batteries
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Power Density

Depends on geometry: highest P/Vol for travel along long axis
MEMS devices typically use plate geometry — not ideal

In-plane motion: hard to achieve optimal travel range

Off-axis travel can be a problem
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Implementation Issues: Resonance

Why use resonant device?
» Allows use of full internal range for low Y,

Why not use resonant device?

* For low frequency application, Y, > z, likely

* Low resonant frequency hard to achieve for small devices
* Not suitable for broadband or varying source frequency
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Implementation Issues: Resonance

Input displacement vs frequency: low frequency range
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Transduction: Electromagnetic

Advantages:

* Well understood system

« No source voltage needed
(with permanent magnets)

Disadvantages

* Limited number of winding
turns in MEMS: low voltages

Example: « Low damping forces in low

Southampton/Tyndall Inst. frequency operation
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Transduction: Electrostatic
P nymelld. sm% o
T s
e _!g l Eﬁi : Advantages: |
i - — * No special materials
e Suitable for MEMS scale

Disadvantages

* Needs priming voltage, or
electret

* high output voltages typical

Example: MIT
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Transduction: Piezoelectric

Advantages:
* High voltage even at low

frequency
« Simple geometries

Disadvantages
* Low coupling coefficient
* integration of material

Example: UC Berkeley
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A Non-Resonant Electrostatic Harvester

«  Siproof mass: whole wafer etching Discharge contact
«  Polyimide suspension: low stiffness

*  Wide frequency range of operation: suitable Conducting suspension
for body motion

«  Self-synchronous: physical contact to Moving capacitor plate
charging and discharging terminals

Fixed capacitor plate

. Size=12x12 X 1.5mm

Charging contacts

assembled generator detail of moving plate
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Non-Resonant Electrostatic Harvester 2

London
trajectory of moving plate
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Measured output > 2 yW at 20 Hz excitation
Wide operating frequency range

Ref: Miao, P. et al. “MEMS inertial power generators for biomedical
applications”, Microsystem Techn. 12 (10-11), pp.1079-1083 (2006).

Top plate (silicon)  Gap Vout

Polyimide
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Non-Resonant Electrostatic Harvester: Problems

« Sidensity low — reduces m

Discharge contact

« Travel range limited — movement
IS in short dimension

Conducting suspension

 Whole wafer etching expensive
and limits integration potential

Moving capacitor plate

Fixed capacitor plate

« Qutput in inconvenient large
impulses Charging contacs
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External Mass Electrostatic Harvester

*  Proof mass rolls on substrate

*  Multiple charge-discharge cycles per transit
*  No deep etching: fabrication simplicity

* Large mass and internal travel range

g 94444 167
611111 .833333 1.086 1.278
MicroGeneras tor Analysis

— Electrostatic simulation
olling Rod Cu Output Contacts

Cu Input Contacts »
|
A\ d
SiO, - coated Cu
plates Substrate

Schematic illustrating concept

Ref:
M. Kiziroglou, C. He and E.M. Yeatman, “Rolling Rod Electrostatic Microgenerator”, IEEE Trans.
Industrial Electronics 56(4), pp. 1101-1108 (2009). Ro||ing mass on prototype device
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A Frequency Up-Converting Piezoelectric Harvester

« External rolling proof mass

« Distributed transduction by series Inertial Mass
of piezo beams Frame

«  Proof mass “plucks” beams by Fezo
magnetic interaction Magnet

* Energy extracted as beams ring
down: high electrical damping not
needed

Ref:
P. Pillatsch, E.M. Yeatman & A.S. Holmes, “Piezoelectric Impulse-Excited Generator for Low
Frequency Non-Harmonic Vibrations”, Proc. PowerMEMS 2011, Seoul, Nov. 2011, pp. 245-
248.
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Sensor Architecture for Micropower Operation

» Harvester power density inherently
low for low frequency (e.g. human
powered) applications

» Traditional architecture based on signal ot
Senzor —r—|Conditioning}—r—_ Transﬁ‘lésiun .

separate power and other modules | Circuits

» Data processing and transmission \ ! /'
modules most power intensive
» Solution: new approach to node

architecture, mixing modules
together
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New Architecture

» Harvester connected between
sensor output and transmitter

» Sensor acts as priming voltage,
harvester as pulse former and
energy amplifier

» Output pulses transmitted
directly without further
processing

charge contact

discharge contact

G o/o
pH sensor —— rolling rod —— Cres
capacitance
‘ loop
antenna
Priming L \\\ _
Voltage |—— 7/; ——— % /l/l/, Receiver
Sensor Voltage Passive Off-the-
Amplifier/Energy Transmitter shelf TV

Harvester

Antenna
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Fully Assembled Device

» Input from voltage supply
representing output of sensors

» RF frequency determined by
size of antenna loop: in this
case 350 MHz

» Commercial off-the-shelf TV
receiver employed for its broad
bandwidth

» Higher frequency (> 1 GHz) will
allow antenna loop close to
harvester size (5 mm)

Ref:
C. He, M. Kiziroglou, D. Yates and E.M. Yeatman, “A MEMS Self-Powered Sensor and RF
Transmission Platform for WSN Nodes”, IEEE Sensors 11(12), pp.3437-3445 (2011).
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“Pure” Rotational Harvesters

Inertial Harvesters: power is limited by proof mass and travel range:

Maximum power = M®3Y,Z /7

Any alternatives?

yes, rotating proof mass:
limited motion range not inherent

Ref:

E.M Yeatman, "Energy Harvesting from Motion Using Rotating and Gyroscopic Proof Masses",
J. Mechanical Engineering Science 222 (C1), pp. 27-36 (2008).
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Rotating Mass Inertial Generator

Example #1: traditional self-winding watch

: RAS
SN OE <
"\.___",-' PE
WHEEL SN WL
PALLET JEwEL
MAINSPRING ol _
A > § . - .‘ R ‘ % T s }EWEL
RATCHET WHEEL =\ | o S S
R —— 5 »
CLICK

‘\"‘"-_A _.-.-.: = '—,,;.:i
\HNRSPR!NB
BALANCE

WHEEL
CLUTCH PINION

OSCILLATING




Imperial College
London

Rotating Mass Inertial Generator

Example #2: Seiko Kinetic

GENERATING UNIT

~ Transtorms the movement
of the wearer inlo eleciricity.

.
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Rotating mass generator — two possible modes:
« driven by linear motion

« driven by rotating motion
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Rotating mass generator — two possible modes:
« driven by linear motion

« driven by rotating motion

Semi-circle design of watch proof masses allows the former:

« Theoretically achievable power is similar to linear motion device: relative
direction of mass and frame motion reverses on each half turn

« Advantage is in implementation practicalities.
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Rotating mass generator driven by rotating motion

Potential advantage: resonant enhancement
Allows benefit of “unconstrained” internal amplitude

Actual constraint is the need for a spring
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Proposal : Rotating mass resonant generator

source motion amplitude 6, , frequency o
proof mass m, radius R

Achievable power:

mR*6*w’
LT
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Compare: Rotating vs Linear resonant generator

Example: upper limb swinging at 1 Hz
Linear: Y, =5 cm
Rotating: 6, = 25 deg
Use mass of 1 g, radius = travel range = 0.5 cm

3 212 3
Pmax _ mYOZOa) . Pmax _ MR 6’060 \/6
T 3
Result:

P,.,=13uW P, =0.2uW\Q
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Rotating vs Linear resonant generator

P..=13uW P, =0.2uWQ

P..: higher for Q > 4000

Technical Challenge:

« High Q for resonant rotating device requires spring with
very high number of turns

Practical Challenge:
*High Q means high drive frequency dependence
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Overcoming the Mass Limit

How else can rotating motion be used in inertial generation?
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Overcoming the Mass Limit

How else can rotating motion be used in inertial generation?

What about driving the rotation actively?



Imperial College
London

Proposal: Gyroscopic power generation

Supporting
frame

Gimbal __




Imperial College
London

Gyroscopic power generation

Basic principle: for moment of inertia | rotating at os and tipped at o, :

torque T = logm,

APPLIED TIPPING
FORCE
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Gyroscopic power generation

Mechanism: couple the rocking frame to the gyroscopic body by the energy
extracting damper (electrostatic...)

For disk spun at o, and rocked at o,
achievable power:

Spin Axis

1 212 2
Py =3 MR°6; 0, @,

FORCE

TWIST ON SPIN AXIS

APPLIED TIPPING
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Gyroscopic power generation

Opportunity: power output rises with spin speed

Limitation: need to subtract drive power

* Depends on drive speed; optimum drive speed thus determined by Q



Imperial College
London

Gyroscopic power generation

Net power:

P ” Z;T/ MR’ w® \/7

gyr

About 4x resonant rotating (passive) case
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Gyroscopic power generation

How to implement in MEMS? High quality spinning bearings not really available.
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Gyroscopic power generation

How to implement in MEMS? High quality spinning bearings not really available.

« Solution: well known format for MEMS gyros
» Vibrating gyro

- @e83 10KV 43
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Gyroscopic power generation

* Proposed format: linear vibration on two axes, one for drive, one for pick-
off;

« Same as gyro sensor except pick-off extracts energy, not signal

<— Vertical spring

Anchor

Drive comb

Frame Lateral spring

after Fedder et al
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Conclusions

«  Basic mechanics sets strict limits on achievable power from inertial
harvesters

« Ultimate power density drops as devices shrink

«  Form factor, resonance and choice of transduction are important
considerations

* Rotating harvesters can offer some ways around the basic limits
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