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Convention (resonance) and a conundrum

Forcing frequency = resonant frequency = response frequency

Amplitude

A Small damping

| u
| ;j-
-

| |
l l

~—~ Medium damping

/ \ Heavy damping

fy fy 3f, f
2 PY Driving
frequency

A compromise between frequency bandwidth and power amplitude by adjusting Q

&R A




| deally...

|

Increase power amplitude...
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...While broadening the operational frequency bandwidth...

...for a given drive amplitude and mass



Parametric resonance

Utilises instability phenomenon and can theoretically attain both

higher amplitude and broader bandwidth than direct resonance...



Parametric resonance
- Parametric modulation of at least
one of the system parameters
- Excitation frequency at 2w,y/n
- Can tune to increase both power

amplitude and frequency
bandwidth simultaneously

Direct resonance

- Directly forced response, typically
excitation parallel to displacement

- Excitation frequency at w,
- Can tune to maximise either power
amplitude or operational frequency
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There is a catch...

Initiation threshold amplitude...

...and precise internal frequency matching.



Autoparametric Resonance in Electrostatic MEMS
Vibration Energy Harvester (2011-2013)
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Power response at room pressure for 0.5 g
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e 1stDR: 20.8 nW at 277 Hz with 40 Hz 3 dB bandwidth.



Power response at room pressure for 0.5 g
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* 4 ordersobserved at 2f,/n, where n is order number.



Power response at vacuum for 0.5 g
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e 1st DR: 60.9 nW at 299 Hz with 11 Hz 3 dB bandwidth.



Power response at vacuum for 0.5 g
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Room vs vacuum summary

Room pressure Vacuum packaged

<2 x14.5

1

* Broaderfrequencybandwidthfor PR, but narrowerfor DR



WARNING

Roadblocks in piezoelectric MEMS implementations @

CHALLENGES
AHEAD

* Potentially achieve higher power density than electrostatic transducers

* Some materials, such as AIN, can withstand high temperature levels

* Initial spring designs results in strain concentration @
— not desirable for piezoelectric transducer optimisation over an area

* Membrane implementations without initial-springs centrsd, il TS disk
observed record number of higher orders (n > 28), &%

but peak power level was still relatively low ~uW

doi:10.1038/srep30167



Ultra high order parametric resonance in MEMS
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A micromachined device describing over a hundred orders of parametric
resonance
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VEH application target for MEMS piezoelectric...

Activate parametric resonance to unlock the potential benefits

of the instability nonlinearity regimes...

...without sacrificing the strain energy distribution across

large area for optimal piezoelectric transduction.



Autoparametric MEMS design topology (2016-2017)
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Device and experimentation
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Device characterisation

Subsidiary cantilever £, ‘

MEMS VEH f 5 Freq.
devices (Hz) | (Hz) | Ratio
Autoparametric tuned 449.3 | 224.2 2.0
Autoparametric de-tuned 474.6 | 224.2 2.1

* Frequency ratio varies between dies due to
fabrication tolerances across the wafer

e Results from two devices shown here (table
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Device characterisation

Voltage

Response at half the excitation frequency
if parametricresonance onsets
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Note log
scale

Power output (W)

Frequency characteristics
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Conclusion

* Parametric resonance can potentiallyimprove both power amplitude and

frequency bandwidth at the same time
* [tsinitiation is non-trivial and involves design and manufacturing complexities

* Piezoelectric MEMS autoparametric design without compromising on

transducer power output has been recently demonstrated
* Ultra high order parametric resonance can be unlocked in MEMS

* Ongoing and future work involves optimising the process stack, improving
robustness and real world vibration testing
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