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A linear vibration energy harvesters can be modelled as a spring-mass-
damper system. o
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Motivation: to increase operational bandwidth of vibration energy harvesters:

» Resonant frequency tuning

fresonant — lvibration

Mechanical/electrical methods
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Passive and Active Frequency Tuning

= Passive frequency tuning methods do not require extra energy but
are uncontrollable.

= Active frequency tuning methods require extra energy. Closed-loop
control schemes can be applied to enable automatic and accurate

frequency tracking.

 Mechanical methods: Tuning by altering mechanical properties.

o Electrical methods: Tuning by altering electrical damping.
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Intermittent and Continuous Tuning

= [Intermittent tuning: Energy is consumed periodically to tune the
frequency.

= Continuous tuning: The tuning mechanism is continuously
powered.
* [Intermittent tuning is more efficient.
* Itis turned off when the harvester works at the right frequency.

* Producing a positive net output energy is more probable.

Ptuning """ ol tin-resonance
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Evaluation of Tuning Methods

The energy consumed by the tuning mechanism should be as
small as possible and must not exceed the energy produced by
the energy harvester.

The tuning mechanism should achieve a sufficient operational
frequency range.

The tuning mechanism should achieve a suitable degree of
frequency resolution.

The tuning mechanism applied should not increase the damping
within the effective tuning range.

The tuning mechanism should be applicable to automatic
frequency tracking.
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Mechanical tuning method
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Principle

For a cantilever based energy harvester operating in the fundamental
flexural mode (mode 1); its resonant frequency an axial load, f_/', Is

given by:
, F F : axial load
fro'=Tra- 1+€ F,: buckling force
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A Tunable Vibration Energy Harvester

Tuning

i Ener
‘ Linear magnets gy
Tuning magnets actuator harvester
re===-=-=-=-=-=-"==-"=-"==-=-="="===== l
Moving direction X Energy harvester |
——— .
Cantilever , ———
Tuning ! ;
Force / 1
]
- Electromagnetic !
(-) : N S Transducer .
I
Vibration X i
direction 1 :
]
Linear : ___________________ _ _:
Actuator a

= Contactless (magnetic) force is applied.

= A linear actuator is used to adjust the position of the tuning
magnet, thus the tuning force.
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Compressive forces increase damping while tensile forces reduces damping.
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Closed-loop Frequency Tuning
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Closed-loop Frequency Tuning
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Case Study

Typical vibration on the engine

Normal speed Fast speed
(~715RPM) (~750RPM)
f (H2) Ampl. (mg) f (Hz2) Ampl. (mg,)
47-48 Hz 700 - 950 ~50 450

Frequency tuning range of the

A Red Funnel ferry running between energy harvester: 42 — 55 Hz
Southampton and Isle of Wight
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A tunable vibration energy harvester powering Real-time output power of the harvester during 16
wireless sensors on a Red Funnel ferry one crossing
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Case Study
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Electrical tuning method
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Principle

= The basic principle of electrical tuning
IS to change the electrical damping by 3
adjusting the electrical load (R, L, C), g /
which causes the power spectrum of the &
energy harvester to shift. g
= Strong electromechanical coupling is g
required to achieve large frequency 2 N D e
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vibration energy harvester
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An Electrically Tunable Vibration Energy Harvester
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under multiple-peak excitations
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Multiple-peak Excitations
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Performance of Linear Energy Harvesters
under Multiple-peak Excitations
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Conventional Bistable Structures

E

LSS ST

| equilibrium
| positions

Normalised potential energy

Position of the inertial mass

= |t consists of a cantilever with a magnet at the tip and a fixed magnet.
= Repelling force between the two magnets.
= |nertial mass jumps between two equilibrium positions.

= Bistable vibration energy harvesters have better performance under
wideband excitation compared to a linear harvester.

It requires great excitation level to trigger bistable operation.

25
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Coupled Bistable Structures
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= The coupled bistable structure requires

lower excitation to trigger the bistable
operation.

It is preferred that the resonant frequency

of the assisting cantilever is lower than
that of the main cantilever (k,<k;).

UNIVERSITY OF

Southampton

Normalised potential energy

‘\ — kilky— 4o : Iy
A — oy =100 : :
] — kyk; =10
Pl — ey =5
\ — kyk; =1
\ k_;/k; =03
100 URURREININ. Lo -~ kst =0

-

\ | Increasing
1 Jealke; A

.

Sl e

=1

Normalised potential energy

oy £ i . A o ;
-2 -1.5 -1 -05 0 05 1 15 2

(%] [ Y i) a2} ~1 =] Lta]
T T T T T T T T

i] i 1 4 i i 1
-2 -1.4 -1 05 0 04 1 15 2

Position of the inertial mass

kp=100].....flf .} ... ]
—— k=150 [

— k=200
— k=250

1}l Increasing § : _ :

Position of the inertial mass

26



Electronics and UNIVERSITY OF

Computer Science SOthhampton

Coupled Bistable Energy Harvester 1

Main Magnets for
cantilever producing
potential wells

Yy = Main cantilevers: 28.9 Hz
| = Assisting cantilever: 16 Hz

Assisting 10
cantilever

Capacitor valtage V)

T o = Linear (Average charging power: 514.1u8V)
| ——— Conventional histable (Average charging power. 417 Suiv)
T T T T T T T

DD 1 ID 20 30 40 SID 60 70 g0 90 100
Time (s)
Electromagnetic energy harvester with a couple Comparison of charging rate under

bistable structure white noise excitation 21
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Coupled Bistable Energy Harvester 2

Top end magnet
Frame

Shuttle magnet Tube

Assisting resonator

Bottom coil
Bottom coil

Bottom end magnet
Bottom housing
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Coupled Bistable Energy Harvester 2
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Assembled Harvester

Harvester D-battery

Diameter: 40 mm Harvester mounted on the
Length: 56 mm (including the shaker
mounting section) 30
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Results
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Peak 3: linear* (coil spring)
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Results
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Results
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Conclusions

* Frequency tuning

 Mechanical tuning methods have a larger tuning range.
« Electrical tuning methods have a higher frequency resolution.

» Electrical tuning methods consume less energy than mechanical
tuning methods.

* Applications of a tunable vibration energy harvester was
demonstrated.

« Performance of a linear harvester is compromised under wideband
excitations.

= Coupled bistable structure

« The coupled bistable structure requires lower excitation to trigger
the bistable operation compared to conventional bistable structures.

* Coupled bistable energy harvesters have better performance than
both linear and Duffing’s nonlinear energy harvesters under

wideband excitations. 35
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ENERGY HARVESTING
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nergy harvesting concems the capture and conversion of ambient energy
E sources (e.g. thermal and kinetic) into electrical energy. It is typically used to
power autonomous electronic systems to replace or extend the life of batteries
ECS has been leading the field of energy harvesting for over 15 years.

2010

= EU FP7 funded TIBUCON project B TBUCONPRO:

# EPSRC funded Energy Harvesting on Fabrics
2004 2008 | peojet
= P = EU FP7 funded TRIADE project = # Host UK Energy Harvesting Networks w
1999 « EUFP6 funded VIBES  |/JEEE
First energy project # Artwork in the vitrine of the ‘Ropemaker’

building in London, powered by airflow energy
harvesters

» Frequency tunable vibration
energy harvester presented

harvesting project

;
funded by EPSRC |  Formed Perpetuum Ltd perpetuum

1995 2000 2006 2009 2011

First energy  Thick-film piezoelectric * Autonomous wireless sensor _  EPSRC funded HOLISTIC Project |yo]jstic Ultra low-power

‘harvesting proposal energy harvester %, | nodepowered by vibration photovoltaic

submitted demonstrated electromagnetic enerzy » Credit card sized wireless sensor node MPPT technique
harvester presented powered by vibration piezoelectric developed

energy harvester presented

o]
-

# First electromagnetic
energy harvester &

* EPSRC project Highly-
efficient thermoelectric
4 power harvesting

« Modular plug-and-play power
resources for energy-aware wireless
. sensor nodes presented

. and residential buildings powered by solar cell

2013
« TSB funded ENERGYMAN project -

» EPSRC funded SPHERE project )
» Co-organised PowerMEMS 2013/

» Co-organised ENSSys PowerMEMS

# Coupled bistable vibration energy harvester v

& Human-powered 2-DOF energy

Flexible coil
Thermoeleetric  Flexible piezoclectric  for wireless
emerey harvester  emerzyharvestingshos  power transfer

@

Harvester

» Series of energy harvesters on fabrics presented, including: ‘

2012 —_

« EU FPy fanded CEWITT project G‘-‘lVLfI

» Autonomous wireless sensor node powered by
frequency tunable vibration energy harvester
operated on Red Funnel ferries

# Holistic energy harvesting design explorer and For more details contact:
simulation toolkit available online Frofessor Steve Besby
Email: spb@ecs saton_ac.uk
» Wireless environmental sensor deployed in office
Or visit

hittp:/Awww.eh.ecs. soton.ac.uk

) =
= 2

nttp://www.eh.ecs.soton.ac.u

Dr Dibin Zhu

dz@ecs.soton.ac.uk 37
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