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The ability to deliver sustainable power to a wireless system network by energy harvesting is attractive not only because of the cost of batteries; it also removes the additional time and cost
that is necessary to replace and maintain the batteries and the labour required to install complex wired systems. This is particularly relevant to the installation of sensor networks in areas
that are either inhospitable or difficult to reach; this includes safety-monitoring devices and structure-embedded micro-sensors. While the energy harvesting technologies are continuously
improving there are also similar advances in microprocessor technology leading to an increase in power efficiency and reduced power consumption. Local electrical energy storage solutions
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are also improving, i.e. the development of super-capacitors. This convergence of technologies will ultimately lead to successful energy harvesting products and systems. C'R°Bowen@bath'aC'Uk
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| | o Context o o | Context Purpose of the work
Ferroelectric ceramics, such as barium titanate and PZT, have the ability to maintain a spontaneous polarisation leading to both There has been increasing interest in development of high The aim of this study was not to optimize the design of the harvester but
piezoelectric and pyroelectric behaviour, making them of particular interest for energy harvesting applications. Introducing porosity to temperature energy harvesters for applications such as near- to assess the potentiality of LiNbO, single crystal Y-cut (010) oriented for
form ceramic-air piezocomposites yields beneficial properties for SONAR applications [1] and it is thought the same principles can be engine sensors and remote sensors for geothermal high temperature energy harvesting. The degradation of LiNbO3 is
. . . . . . . . 2 o
applied to energy harvesting. Piezoceramics can be characterised by an energy harvesting figure of merit (FOM) [2], d33/¢33, where explorations (>600°C). However the common piezo materials | | assessed via impedance spectroscopy measurements from RT to 750°C
d33 is the longitudinal piezoelectric coefficient and £33 is the permittivity at constant stress. This work aims to demonstrate that considered for vibration energy harvesters such as lead back to RT. Output voltage and harvested power as a function of
. introducing high levels of porosity can yield an improvement in FOM due to a significant reduction in permittivity. ) zirconate titatate (PZT) piezoceramics are unsuitable as the electrical load up to 500°C were recorded. Difficulties and particularities
typical operating range is below 400°C. related to the design of high temperature harvester are addressed.
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