

A Self-powered **Autonomous Device for** Wireless struCtural Health monitoring - the **SANDWICH project**

C A Featherston, K M Holford, R Pullin, J Lees, M Pearson, B J Greaves, O Wood, M Arnold, A Kural, K Thangaraj

Cardiff University, UK

Partners: MicroSemi, NEDEAS, Airbus

Technology Strategy Board Driving Innovation

Content

- Motivation
- Background
 - Structural Health Monitoring
 - Energy Sources
- Vibration Energy Harvesting
 - Passive
 - Active
- Thermoelectric Energy Harvesting
- RF Energy Harvesting
- Power Management
- System Integration
- Conclusions

Motivation

- To reduce the environmental impact/cost of air travel aircraft need to be lighter
- This necessitates optimum use of material
- Smaller safety factors requires confidence in the structural integrity
- Must be achieved without lengthy downtime for routine inspection
- Solution lies in structural health monitoring (SHM)
- Energy harvesting provides the potential for a self powered wireless SHM system

Typical SHM System

Power Requirements for Wireless Nodes

- Mistras 4 channel acoustic emission wireless board
- Power requirements typically in mW range dependant on application
- Input voltage 5V
- Power consumption
 - 10 mW sleep
 with timer
 - wake up
 - 50 mW sleep
 with parametric
 wakeup
 - 170 mW full power

Energy Harvesting Sources

Energy Source	Power density	Reference
Acoustic Noise	0.003μW/cm³ @ 75Db 0.96 μW/cm³ @ 100Db	Rabaey, Ammer, Da Silva Jr, Patel and Roundy (2000)
Temperature Variation	10 μW/cm³	Roundy, Steingart, Frechette, Wright and Rabaey (2004)
Ambient Radio Frequency	1 μW/cm²	Yeatman (2004)
Ambient Light	100 mW/cm ² (direct sun) 100 W/cm ² (office lighting)	Available
Thermoelectric	60 W/cm ²	Stevens (1999)
Vibration (micro generator)	4 W/cm3 (human motion Hz) 800 W/cm ³ (machines kHz)	Mitcheson, Green, Yeatman and Holmes (2004)
Vibration (piezoelectric)	200 μW/cm ³	Roundy, Wright and Pister (2002)
Airflow	1 μW/cm²	Holmes (2004)
Push buttons	50 J/N	Paradiso and Feldmeier (2001)
Shoe inserts	330 μW/cm ²	Shenck and Paradiso (2001)
Hand generators	30 W/kg	Starner and Paradiso (2004)
Heel strike	7 W/cm ²	Yaglioglu (2002) Shenck and Paradiso (2001)

Thermoelectric Energy Harvesting

Defining a reference temperature scenario

Range of temp gradients developed
Fuel/surroundings identified as providing most potential
Thermocouples inside fuel tanks of Lockheed
L1011
Temperature

Temperature differences of up to 30°C over significant time periods
For temp diff 0-50°C at

average temp -50-50°C most suitable material is bismuth telluride

•Svehla, R., 1990, In-Flight and Simulated Aircraft Fuel Temperature Measurements, http://ntrs.nasa.gov:80/archive/nasa/casi.ntrs.nasa.gov/19910006105_1991006105.pdf

Thermal model of power output based on real flight data

Initial model (Min and Rowe)

Temperature Difference/ Power Output –

Incorporating boundary conditions

Energy Harvesting Potential

Flight	Inflow Energy,	Outflow Energy,	Total Energy,	Average
	[J]	[J]	[J]	Power, [mW]
23 April 1981	88.26	86.90	175.16	6.65
30 April 1981	126.41	242.49	368.90	15.3
19 March 1983	248.28	339.16	587.43	22.3
21 Jun 1981	125.31	163.02	288.06	12.0
Average	147.07	207.20	354.89	14.06

Test Rig

Simulation

- Cargo Bay
 - Skin Primary insulation
- Hydraulics
 - 2 hydraulic Pipelines
- Waste Water
 - Waste water tank, Ambient
- Crown Area
 - Skin, Primary insulation, Ambient)
- E-bay
 - Fuselage, Primary Insulation, Ambient
- Cabin
 - Fuselage, Primary Insulation, Secondary Insulation

Results

Simulated power output for Micropelt MPG-D751
Utilised "mypelt" simulation tool
Indicated possibility of generating average power levels of 3-10mW

Vibration Energy Harvesting

Vibration generated in an aircraft wing panel

Frequencies between 0 – 300Hz, accelerations up to 0.9g

Piezoelectric Energy Harvesters

Mide QP10n, QP10w, QP20n and QP20w piezoelectric transducers

Product		QP10n		QP10w	QP20n	QP20w
Piezo Layers		1 x 10-mil [US]		1 x 10-mil [US]	2 x 10-mil [US]	2 x 10-mil [US]
Device Size [in]		2.00 x 1.00 x 0.015		2.00 x 1.50 x 0.015	2.00 x 1.00 x 0.03	2.00 x 1.50 x 0.03
Active Size [inches]	1.81 x 0.81 x 0.01		1.81 x 1.31 x 0.01	2 x (1.81 x 0.81 x 0.01)	2 x (1.81 x 1.31 x 0.01)
Weight [oz]		0.1		0.1	0.17	0.28
Capacitance [µF]		0.06		0.06	0.12	0.20
Voltage Range [V]	\backslash	± 200	/	± 200	± 200	± 200
Full-scale Strain [µɛ]]	± 262		± 27 <mark>8</mark>	± 264	± 280

Base

amplitudes of +/- 0.1mm for wing panel subject to boundary layer turbulence

Harvester Positions

Initial Results

•Four harvester system

£ 6	Unanter	V	T	7					
I, frequency	Harvester	y _{ay} , mean	Lay, mean	Areal and mean	3.0	3mW	harvester	1 at 234	Ηz
(HZ)	number	voltage	current	impedance, (KΩ)		1		1	
10		(v)	(mA)	110	-+ RMS Power EF	12			
40	1	1.86	0.0169	110	2.5 -+-RMS Power El	13			
	2	0.95	0.0151	63	-+ - RMS Power EH	14			
	3	0.71	0.0027	266			/		
	4	0.71	0.0044	163			+		
90	1	6.26	0.198	32	20				
	2	0.96	0.0621	16	S .				
	3	0.84	0.0173	49	2				
	4	0.91	0.0435	21	215		1 6	*	
130	1	1.34	0.205	7	§ L3		\$	1	
	2	1.22	0.117	10	<u>s</u>				
	3	0.71	0.0242	29	ž		1	i 🔪	
	4	0.77	0.0782	10	1.0	$\sim \Lambda$		-	
200	1	17.5	1.34	13			1		
	2	16.9	0.676	25			1		
	3	5.28	0.0587	90	0.5		1		
	4	5.34	0.206	26	0.5		1	1. 10	
300	1	15.2	1.25	12				A-4/ N. /	
	2	14.2	0.611	23	and and	teres X	1 Jun	A-A	
	3	4.01	0.196	21	0	+-+-	5	14	
	4	3.86	0.341	11	0 50	100 1	50 200	250 3	00
						Freque	ency, Hz		

Harvester Positioning Optimisation Deflection of Built-in Plate

 For a plate with built-in edges deflection of the plate is described by:

$$w = \frac{w_0}{4} \left(1 - \cos\frac{2m\pi x}{a}\right) \left(1 - \cos\frac{2n\pi y}{b}\right)$$

• The bending strains experienced at the surface of the plate in the x-direction (ε_{Bx}) and y-direction, (ε_{By}) are

$$\varepsilon_{By} = \frac{t}{2} \frac{d^2 w}{dy^2} \qquad \varepsilon_{Bx} = \frac{t}{2} \frac{d^2 w}{dx^2}$$

The membrane strains in the x and y directions is

$$\varepsilon_{Mx} = \frac{1}{2} \left(\frac{\partial w}{\partial x}\right)^2 \qquad \varepsilon_{My} = \frac{1}{2} \left(\frac{\partial w}{\partial y}\right)^2$$

Optimal position over a range of Frequencies

- Optimal position maximum bending and membrane strains.
- Vibration frequencies /mode shapes vary throughout flight.
- Optimal position varies between vibration frequencies.
- Bending and strain equations over the entire frequency range:-

$$F(x,y) = \sum_{m} \sum_{n} \alpha_{mn} \frac{t}{2} w'' \omega_a \qquad F(x,y) = \sum_{m} \sum_{n} \alpha_{mn} \frac{1}{2} [w']^2 \omega_a$$

Cumulative Bending/Membrane Strai

Bending strains in x direction

Membrane strains in x direction

•Optimised using GA (NSGAII algorithm, population size: 100, simple multi point crossover: 0.95, simple be gene mutator: 0.05, number of generations: 100)

Optimal Position and Angle

Strain at an angle calculated from components

 $\varepsilon_{max} = \pm \varepsilon_x \cos\theta \pm \varepsilon_y \sin\theta$

Original Positions

Active Vibration Harvesting

Demonstrated using Quick Pack QP10n (Mide)

Active Vibration Harvesting

•Time domain maps of OOP vibration displacement at receiving transducer •Power de

•Power delivered by the receiving transducer

- •17mW power transmitted across a distance of 540mm in 1.5mm thick aluminium plate driven by a signal of 20V amplitude at 224kHz f
- Power throughput can be easily increased by increasing the drive voltage

RF Energy Harvesting

RF Transmission

- Study CFRP/GFRP
- CFRP absorption increased rapidly with frequency
- GFRP almost transparent
- Focus two low frequency RF bands 13.56 MHz/ 125 kHz

•The antenna used to measure transmission

Power loss through CFRP

Power loss through GFRP

Power Management

Architecture of a Wireless Sensor Node Powered by TEG

•Hybrid storage

CARDIFF

UNIVERSI

PRIFYSGOL

Energy Density vs Power Density

- The stored up energy should be from 40 J to 50 J
- Need to be able to operate between -40°C to +85°C
- Options include batteries and supercapacitors

- Sensor Node requires an energy storage unit that can
 - Store sufficient energy for prolonged, 'normal' operation
 - Be able to provide high current when required e.g. wakeup and transmission phases

Advantages of Hybrid Storage

- Can provide both energy and power density simultaneously
- The hybrid unit has a 3 J higher capacity than the Maxwell PC-10(5.54 F)
- The weight of hybrid system is almost half the weight of the supercapacitor

Storage Unit	Voltage Applied (V)	Energy (J)	Weight (g)
Maxwell PC-10 (2 in series: 5F)	4	41.32	12.6
MEC202+ Nesscap (Hybrid)	4	44.48	5.975

Advantages of Hybrid Storage

- Hybrid discharge 140 mins at +20°C, 120 mins in -20°C (due to temp dependent behaviour of battery (internal resistance increases at -ve temperature)
- Large voltage drops at battery eliminated by using supercapacitor in parallel giving a steady discharge (and hence extended runtime)
- The lower threshold voltage of battery also increased by parallel supercapacitor (also giving extended runtime)

Systems Integration

Systems Integration

- •Acousto-Ultrasonics
- •Vibration Energy Harvesting

Conclusions

- Considerable challenges in generating level of power required from energy harvesting and managing it efficiently
- Autonomous structural health monitoring device powered by energy harvesting is feasible
- Influence of sensing strategy