Power Management in Energy Harvesting Applications at Fraunhofer IIS

Energy Harvesting 2014

Dr. Loreto Mateu

loreto.mateu@iis.fraunhofer.de Fraunhofer Institut für Integrierte Schaltungen IIS Nordostpark 93, 90411 Nuremberg

Fraunhofer Institute for Integrated Circuits IIS

Established: 1985

Locations: Erlangen, Fuerth, Nuremberg, Dresden

Employees: ca. 700

ca. € 80 Mio Budget:

Revenue Sources 75% Projects 25% Basic Funding

www.iis.fraunhofer.de

Fraunhofer Institute for Integrated Circuits IIS

- Power Management
- **Battery Management**
- **Battery Monitoring**
- Energy Transmission
- Energy Harvesting

www.iis.fraunhofer.de/ec/power

www.smart-power.fraunhofer.de

Integrated Energy Supplies – Ways of Cooperation

- Technical Consulting: We investigate your problem and propose solutions.
- Study and Concept: We develop an individual concept in close cooperation with the customer.
- Project: The contract specifies objectives, milestones and deadlines for component and prototype design.
- Licensing: Available components and devices can be used via licensing agreements.

 Contact: Dr. Peter Spies Fraunhofer-Institut für Integrierte Schaltungen IIS Nordostpark 93 90411 Nürnberg Tel. 0911 / 58061 6363 peter.spies@iis.fraunhofer.de

Outline

- Introduction
- Ambient Energy Data Logger
- Power Management for Thermogenerators and Solar Cells
- Power Management for Piezoelectric Generators
- Battery Management for Thin-film Micro-batteries
- Summary

Introduction

- Environment is not constant ambient energy changes
- AC signal with variable frequencies and amplitudes
- Low voltage or current (mV or μ A)
- Self-starting power management
- Focus on rectifier, dc-dc converter, MPPT
- Not all are required in any application and with any transducer
- Charger/limiter/protection are often redundant, because of small currents

Introduction

- The energy harvested must be equal or greater than the energy consumed by the load (load powered continuously or intermittently)
- Choose the sensor depending on voltage supply, active current consumption, stand-by current consumption and start-up time (stand-by and active time).

Ambient Energy – Data Logger

- Characterization of Energy Harvesting sources. Environment is not constant - ambient energy changes
- Characterization of Energy Harvesting transducers
- Data logger with GPS
- Accuracy 2.5 m
- Sensors
 - Acceleration (bandwidth up to 1.6 kHz, 13bit resolution at +/-16g)
 - Versatile interface for additional sensors
- SD-Card (8Gbyte)

Power Management for Thermogenerators and Solar Cells

- threshold voltages of semiconductor technologies are scaled down
- thermo-generators: about 50 mV per Kelvin
- solar/fuel cells: about 0.5 V
- The main differences compared to state of the art step-up converters:
 - Transformer instead of single coil
 - Power converted only in primary winding
 - Parallel connection of low threshold transistor (JFET) and low onresistance transistor (MOSFET)

Power Management for Thermogenerators and Solar Cells

Power Management for Thermogenerators and Solar Cells

Power Management for Thermogenerators and Solar Cells

- ASIC design reduces volume and costs (CMOS 180 nm, 1.5*1.5mm)
- all components on-chip except transformer (L1=500µH, L2=12mH) and output capacitor
- start-up voltage of 20 mV, output voltage: 1.5 V to 5 V

Power Management for Thermogenerators and Solar Cells – MPPT

- Maximum Power Point Tracker (MPPT) digitally controlled
- A low-power microcontroller regulates the duty cycle of the DC-DC converter to maximize its output power
- Minimum start-up voltage of 150mV
- Output voltage between 2 V and 5.5 V
- Power consumption of MPPT (µC) is determined by frequency of duty cycle update (very low for ambient energy)
- Algorithmus (Hill Climbing) easily portable to another microcontroller

Power Management for Thermogenerators and Solar Cells – Demonstrators

- Application field: house automation in windows, heatings, etc.
- Thermo-electrical power supply for wireless sensors
- Combination of thermogenerators and solar cells
- Application example: power sensors, RF transmitters and a Bluetooth low energy module.

Power Management for Piezoelectric Generators

- BMBF-Project PiezoEN with Wölfel Beratende Ingenieure GmbH + Co. KG and Invent GmbH
- Goal: Self-powered sensor system for structural health monitoring
- Analysis of bridge reveals natural frequency: Tuning of generators
- Test structures for evaluation of power output, substrate materials, piezopatches, etc.

Test instalation in a bridge (359m long in Bayern)

Power Management for Piezoelectric Generators

- The maximum harvested power if a diode bridge is employed as rectifier is 5.23 mW
- The harvested power if a complex conjugate load is employed is 9.18 mW
- The power ratio is 0.57
- M=0.42

Power Management for Piezoelectric Generators – Parallel SSHI

[Priya]

- The current of the piezoelectric element flows through the diode bridge until a voltage peak is reached.
- The current flowing in the switching system is always null, except during the inversion phase.
- During the inversion phase, the piezoelectric voltage changes its polarity in a time given by $t_I = \pi \sqrt{L_{res}C_{piezo}}$

Power Management for Piezoelectric Generators – Parallel SSHI

[Ben-Yaakov]

- Control circuit in combination with the Parallel SSHI
- The control circuit is powered by the piezoelectric element
- The differentiator detects the peak voltage
- The output of the differentiator is used as an input in a comparator
- M_n and D_1 conform the switch for the positive to negative voltage inversion
- M_p and D_2 conform the switch for the negative to positive voltage inversion
- The diodes prevent that the current flows through the inductor once the inversion has taken place

Power Management for Piezoelectric Generators – Modified Parallel SSHI

- The number of diodes has been reduced from six to just two and the number of MOSFETs remains two
- CH1, piezoelectric voltage v_1
- CH2, output signal of the differentiator
- CH3 is the control signal of the MOSFETs v_c
- CH4 is the unregulated DC output voltage V_{DC}

Power Management for Piezoelectric Generators – Control Circuit

- Challenge is the control circuit
- Peak detection with differentiator for a narrow bandwidth
- **R**₁, C₃, D₃, D₄ act as differentiator for low frequencies with higher bandwidth
- Broadband control circuit can enable broadband or self-adjusting AC-DC converter

Power Management for Piezoelectric Generators – ASIC Design

- The input voltage range is ±20 V.
- All components on-chip except inductor
- Diodes D5 and D6 are synchronous diodes.
- Ultra-low power consumption of LDOs, comparator and level shifters
- Power consumption: ca. 35 µW at 20 Hz
- Technology: AMS H35B4
- Chip-Size 2.2x2.3 mm
- Currently: Test and evaluation

Power Management for Piezoelectric Generators – Modified Parallel SSHI

Power Management for Piezoelectric Generators – Bridge Monitoring

- Power output: max. 0.8 mW, mean 0.1 mW per piezo patch
- f=2.25 Hz
- Bridge is not space-limited

© Fraunhofer IIS

Power Management for Piezoelectric Generators – Demonstrators

- Application fields: structural health monitoring, condition monitoring, GPS tracking for logistics,...
- Voltage converter adapts voltage peaks
- Input source: Hand movement (1 2 Hz, 0.5 – 1 mW)
- Application examples: power display, sensors and a RF transmitter

Battery Management and Monitoring for Thin Film Micro Batteries

- High Drive Current
- High Energy Density
 - 50 X > SuperCap
- Low Leakage (selfdischarge)
 - 4,000 X < SuperCap
- Rechargeable / Long Life (more recharge cycles than either a coin cell or a Li-ion Polymer)

Battery Management and Monitoring for Thin Film Micro Batteries

- Battery management ASIC for micro-batteries (e.g. C =1 mAh)
- Power consumption < 1 μ A, sleep < 10 nA
- Charge control and protection
- State-of-charge estimation: State-alone or µC-assisted
- Currently: Test and evaluation of the ASIC

Summary

- It is necessary to monitorize the ambient energy to be used
- Additional functionality required in the power management unit (detectors, low-voltage dc-dc converters, MPP trackers), which must not degrade efficiency
- State-of-the art power management circuits are not well suited for energy harvesting (impedance matching, real MPPT tracker, ultra low start-up voltage, low start-up time)
- Energy versus power consumption. Energy storage is required.
- Battery management and monitoring of thin film micro batteries.
- There are still a lot of unsolved challenges: leakage / standby currents, efficiency versus load range, reduce start-up voltage, frequency tuning
- Energy Harvesting can supply low power electronic devices

References

[Ben-Yaakov] S. Ben-Yaakov and N. Krihely. Resonant rectifier for piezoelectric sources. In Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, vol. 1, (2005).

[Mateu] Loreto Mateu, Lars Lühmann, Henrik Zessin and Peter Spies. Modified Parallel SSHI AC-DC Converter for Pizoelectric Energy Harvesting Power Supplies. Telecommunications Energy Conference (INTELEC), 2011 IEEE 33rd International. IEEE, 2011.

[Pollak] M. Pollak, L. Mateu, P. Spies, Step-up Dc-dc Converter with Coupled Inductors for Low Input Voltages. PowerMEMs 2008.

[Priya]S. Priya and D. Inman, Energy Harvesting Technologies. (Springer Publishing Company, Incorporated, 2008).

Power Management in Energy Harvesting Applications at Fraunhofer IIS

Energy Harvesting 2014

Dr. Loreto Mateu

loreto.mateu@iis.fraunhofer.de Fraunhofer Institut für Integrierte Schaltungen IIS Nordostpark 93, 90411 Nuremberg

