EPSRC

Pioneering research
and skills

Modelling and Optimisation of Broadband Energy
Harvesters Using Bistable Composites

David N. Betts, Christopher R. Bowen, H. Alicia Kim
Department of Mechanical Engineering, University of Bath, UK

Paul Weaver
National Physical Laboratory, Teddington, UK

Dan Inman
Department of Aerospace Engineering, University of Michigan, MI, USA

AN A UNIVERSITY OF

Department of
Mechanical Engineering




Broadband Energy Harvesters

 ~10-30mW power required for low power electronics (e.g.
structural health monitoring)

* Most are tuned to vibrate at resonant frequencies 2
unsuitable for broadband ambient vibration

e Bistable systems have broadband ‘
energy harvesting characteristics due “ . 4

to nonlinearity (e.g. cantilever beam i3 —
in @ magnetic field) |

Shaker attachment

* Bistable piezo-composites able to
harvest energy from a wide range of
frequencies
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To model and design vibration broadband energy
harvesters using bistable composites.

* Introduction of bistable composites

* Modelling and investigation of dynamics of piezo-
bistable composites

* Arbitary shape bistables with tailored mass distribution
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Piezo-bistable composites based on statics.
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Existing modelling approach is based on minimization of total strain energy, W

out-of-plane displacement = 1-(ax® + 5y’ + cxy)

W is the integral of strain energy density over the laminate volume,
a function of: out-of-plane (a-c), and in-plane shape coefficients (d,_,),
stiffness, thermal forces and moments,

laminate geometry

_W_

= =0; i=1.14
/i ce;

where the ¢, s are the coefficients q, b, ¢, d,_y;.
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* Laminate specific
parameters

1° * Resign seepage

* Imperfections
0 * Limitation of the
parabolic shape
function
e Effects of MFC
local stiffening
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Modelling and investigation of dynamics
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Base excitation

* Nonlinear dynamics
* Electro-mechanical

Analytical expression for
nonlinear stiffness

— Mx + Dx +[K(x )+ OV = F(7)
\'

_CpV+—+6’5(=O
R
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Electro-mechanical
coupling
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out-of-plane displacement w=§(ax + by )
Strain ener 1 2 w2 [[A B][e’ N (&
ey w==(" f ) dxdy
2J-1,20-12 (| B D]k M'[] |k’

Material stiffness properties T Strains and curvatures
Residual thermal forces and  (functions of @ and b)

moments

which leads to 2

local minimum
(W=.0867)

-0.1

W = glazb2 +g,ab + g3a2 + g4b2 +ga+gb+g,

0

Ak -0.2
and K= M Ez
0x %-3- W)
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3
where x = [a, b]T 5
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*

M=M_ +M

Determined from work done
by inertial forces

Mechanical Engineering

X H+ K(x)+ NV = F(t)

Rayleigh proportional damping

D = oMx + SK(x)

a, determined experimentally by
measuring the decay response of
oscillations at the resonant
frequency using a laser
vibrometer.

p, assumed negligible as the mass
term dominates for the relevant
frequency range
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MX+DX+K(X)+9V=F(t)
CpV+1+t95(=O
R,

Capacitance of the piezoelectric element (670nF)
Measured experimentally

Load resistance attached across the piezoelectric element (10k€2)
Remains fixed throughout this work

The optimal value of R, to maximise power output is frequency
dependent. The value used here is not varied as the frequency
changes, but is chosen to fit well within the frequency range
considered

Piezoelectric electromechanical coupling coefficient (0.48)
Manufacturer’s value
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Experimental Set-Up

200 x 200 x 0.5mm laminate (HTA/913)
[0/90]; stacking sequence

85 x 85 x 0.3mm MFC (P2-type)

10k<2 load resistance

Centrally mounted to a electrodynamic
shaker

Vibrometer

e Pjezoelectric
- |_aminate state 1

System to reach a steady state — 30 seconds
Data recorded for the subsequent 6 seconds
Input: frequency and acceleration (g-level)
Output: Displacement and Velocity (laser

vibrometer) and Voltage (oscilloscope)
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Mode Type

Example Waveform

Single well Resonance

oscillations Subharmonic MAN\AMAMMMA
Off-resonance

Intermittency | Periodic
Chaotic

Continuous snap-through
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Single well |

N
T

5.5, 55Hz _

WVelocity {m/s)

Welcoity {m/s)

1+ 58Hz resonance

19Hz subharmonic

Continuous

| 5.7g, 55Hz 1
snap-through |

Velocity {m/s)
Velocity {m/s)
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+ stable states

®  start position of
each time period

Off-resonance single
well not plotted (too
small).

A 7-cycle pattern is
evident in the periodic
solution

Intermittent behaviour
shows some higher
peak velocities.

Continuous shap-
through shows high
velocities (hence
power) at every cycle.
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Velocity (m/s)

What conditions needed for continuous snap-through?

0.45 T T T T T 045 ' ' 4 ! ! 0.45 T
3 59 10
04} 9] 04 Snap-through . 04F Snap - through 9]
035} : 0351 . 035} -
03f R 0.3 . 03 .
@ @
025} {1 E025 1 E025¢
= P
0.2} { 2 o2t S 02t
> p
0151 0151 015k
01f 01 01F
0.05f 0.05F 0.05
0 0 0
20 30 40 50 60 70 80 20 30 40 5 60 70 80 20 30 40 50 60 70 80
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Linear — no snap-through Narrow band of snap-through Wide band of snap-through

FFT plots of corner velocity generated for slow frequency sweeps (0.1Hz/s) at three
different amplitudes.

Snap-through is dependent on a combination of drive frequency and amplitude.
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g level

10
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Single well only

- Intermittency
- Continuous snap-through

* Intermittency modes
change repeatedly
between periodic and

chaotic.

* Broadband snap-through
with increasing g-level.

C  chaotic intermittency
+  periodic intermittency
* XoxoxoX XX XX X XX O  continuous snap-through
% single well
4 mode transition
1 | 1 | 1
45 50 55 60 65
Frequency (Hz)

70

NI/ UNIVERSITY OF

Department of
Mechanical Engineering




<D)Zing.k:m.ell oscilllations % . EXperi mental
erio .IC mtenn.lttency o o 10g
B0 e v o W Modelling
o ®
200 ° ° °
z A &
’§’150 A San ok oA
] —o** A . A .
S N N : S Reasonably good at modelling the
.
100 e %ﬂ modal boundaries
(m]
. g B L :
50 EE;E_E @@ﬂ_ﬂﬂﬂ Correlation in power is good for
o small amplitude oscillations
0 CooeaECEoEeEd :
20 30 40 50 60 70 80 Significant discrepancies in power

Frequency (Hz)

MWW\ Single well oscillations 148mW (139mW)

/\/\/\/\/\/\/\/ Periodic intermittency 149mW (151mW)

/"\/\/‘]\l\'\/\ Chaotic intermittency 160mW (180mW)
/\/\/\/\/\/\ Continuous snap-through 244mW (279mW)

M
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in the intermittent region.

Highest power output in
continuous snap-through at 54Hz
(both modelling and experiments).
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Power (miy)

Average Power Outputs
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* Snap-through first occurs at 5g.
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* Peak power does not significantly increase for beyond 5g.

* Half-power bandwidth (frequency band over which half the peak power is
observed) continues to increase (7Hz at 3g vs 22Hz 10g).
* Modelling consistently over-predicts power by ~15%.
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Arbitary shape

Generalise the existing
modelling above to
consider arbitrary
planforms

Assume that static shapes
of arbitrary geometry
bistable laminates are still
be approximated by the
out-of-plane displacement
profile
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B laminate

void

Discretisation of an example bistable laminate planform.
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Arbitary static shape

0 3 6 9 12 15 18 21 24 24 -2

Out-of-plane displacement (mm)

-8 15 12 -9 -6 -3 0

Out-of-plane displacement of both stable shapes of the x20
laminate. Red nearest the camera, purple furthest away.
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Difference between experimental and predicted shapes of x20 laminate in mm and b) as a
percentage of the measured value.
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Limitations of model

-5 12 9 -6 -3 0 3 6 9 15 12 -9 -6 -3 0 3 6 9
Out-of-plane displacement (mm)

Out-of-plane displacement of the x40 laminate in two additional stable
configurations (a) top left and bottom left sections are snapped forward and (b) top
left and bottom right sections are snapped forward.
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Addition of piezoelectrics (experimental with NPL)

0.03

Power, W .1 . Power, m.-1 .-
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50 10 Resistance, Ohm

Experimental power outputs for a single MFC (one of four) attached to x30 laminate at (a)
3g peak acceleration and (b) 9g peak acceleration in the range 26-50Hz and 1kW-1MW.
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Addition of piezoelectrics (experimental and model)
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Experimental and modelling power outputs for a single MFC (one of four) attached to the
surface of the x30 laminate at (a) 3g peak acceleration and (b) 9g peak acceleration in the
range 26-50Hz with resistance load of 124kW.
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® Analytical, FE and experimental investigation of bistable piezo-
composites.

® Developed a dynamics model for base-excited bistable composite
energy harvesters.

® Complex nonlinear dynamics modes identified.

® The model is reasonably good for predicting the modal boundaries
and peak power.

® Highest power outputs in continuous snap-through modes —
244mW at 10g acceleration for a 200x200mm laminate with
85x85mm piezoelectric.

® Arbitary shape model — good agreement with static shape (5-8%)
and power level

® Tool for optimisation of bistable laminates for energy harvesting
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