

PRIFYSGOL

Wireless Electric Power Transmission Using Ultrasonic Guided Waves March 2012

A. Kural, R. Pullin, C. Featherston, J. Lees, J. Naylon, C. Paget and K. Holford

Performance of the current prototype

Measured power throughput: 12.7 mW Drive voltage: 20 V p-p at 65 kHz or 35 kHz Distance of transmission: 0.54 m Transmission in 1.5mm aluminium plate

Transducers: low-profile Quick Pack piezoelectric patch, 0.5 mm-thick

The same setup is expected to transmit 320 mW when driven by a 100 V p-p signal

Laboratory prototype

- Application: to supply electricity to the wireless sensor **nodes** of an aircraft structural health monitoring system
- Ultrasound **generato**r positioned near an existing power line
- Ultrasound in the form of **Lamb waves** propagates through the structure of the aircraft
- Ultrasound **receivers** integrated with sensor nodes pick up the incoming ultrasound and convert it back to electricity used to power the sensor node

- Piezoelectric patch transducers used as both transmitters \bullet and receivers of ultrasound
- Patch transducers are **0.5 mm thick**, up to 90 × 30 mm
- Patch transducers at a given input voltage transmit 1000 times more power than crystal-type transducers traditionally used in ultrasonic damage detection systems
- Off-the-shelf Quick Pack and MFC transducers are used
- The laboratory system is built on a 1.5 mm thick aluminium plate to model an aircraft structural element

Laser vibrometry

- Electric characteristics of patch type transducers are similar to those of capacitors. The resistance is small and the reactance is large and negative
- Inductors can be used to compensate for the transducers' reactance
- Experiments showed that using an optimally chosen inductor \bullet increases the power throughput by a factor of seven
- Inductors can also be used to **tune the system** for a desired operating frequency
- **Scanning laser vibrometer** is used to measure the ultrasonic vibration present in the plate
- Distribution of vibration amplitude over the plate area is mapped, allowing to compare various transducers' directional characteristics
- Measured vibration **amplitudes** of the aluminium plate surface are between 1 and 40 nanometres
- Generation and reception efficiency of transducers can be quantified
- Measurements will be used to **validate results** from simulations carried out using the **computer software LISA** and to optimise the transducers

The project is sponsored by Airbus and the Cardiff School of Engineering The laser vibrometer was provided by Swansea Metropolitan University

kurala@cf.ac.uk

Cardiff School of Engineering, Queen's Buildings, The Parade, Cardiff, CF24 3AA