Real World Vibration
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I Background 2

Integrated system designhed for real vibration

Harvester input—— ==

Novel nonlinear harvester design with mechanical
amplification mechanism (undergoing patent filing.)

« Real world vibration is wideband in nature .
but conventional linear harvesters are
designed for a specific frequency.
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 Novel nonlinear harvester offers around 5 times
more calculated peak power (graphs below) than
linear harvester (experimentally validated).

 Design modeling typically use a simple
sinusoidal source instead of real data.

Optimised design with broader frequency response
to extract maximum energy from real vibration.

Microcontroller and

 Aim: employ mechanical amplification and ‘ |
o ZigBee RF module

nonlinear vibration (broader frequency
response) harvesters that are tailor

designed for application specific real S— .
: : Power response of a conventional linear harvester designed to operate at ~30 Hz
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* Full system integration with wireless sensor motes.
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Real vibration data of a Japanese rail train bridge, measured 1 inch away from the track
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3. MEMS design strategies 4 Genetic algorithm 6 Future work

* Additional initial spring mechanism for

lower 1st mode frequency (10%’s Hz) and
mechanical amplification.

Nonlinear vibrational designs to access
broader frequency bandwidth.

Multiple axial vibration and out-of-plane
motion to enable large capacitance
change without displacement limit and
compact spacing of comb fingers.
Therefore, higher power density.
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XOut-of—pane vibration mode

Torsional vibration mode

A genetic algorithm with numerical
simulations that considers the effects of
each parameter of the real vibrational

source in order
to yield an
optimal power
and frequency
response after | |
n generations 0 10 20 30
of a roulette generation
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harvested energy: u J

wheel selection and evolution process.

5 Conclusion

Numerically and experimentally shown
performance enhancements of novel
nonlinear harvester over linear harvester
(x5 peak power & x3 wider frequency).

* Nonlinear and broadband
mechanisms,

* Low frequency MEMS designs,

« System level integration of
harvester and wireless sensor.
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