Application of Human Power for Pervasive Sensing in Sports and Healthcare

Benny Lo
Outline

- The Need for In-body Pervasive Sensing
 - In Sport
 - In Healthcare

- Limitations of the Current System

- Enabling Pervasive Sensing In-body
 - Challenges
 - Energy Demands
 - Possible Trade-offs
Pervasive Sensing in Sport

Muscle Biopsy:

- **Measure muscle metabolism**
 - Widely used in human exercise physiology and sports medicine

- **Measure muscle glycogen content**
 - Factor in limiting performance capacity for prolonger, sever exercise

- **It’s highly invasive**
 - Requires a needle for percutaneous biopsy sampling of muscle tissue
Pervasive Sensing in Healthcare

Postoperative care:

- Role of pervasive sensing in post-op monitoring
 - 40.3M inpatient, 31.5M outpatient operations per annum
 (US National Center for Health Statistics)
 - Immediate / Early / Late complications

- Tasks of a pervasive monitoring system
 - Quantify activity, recovery, & physiology
 - Detect complications early
The Hamlyn Centre
The Institute of Global Health Innovation

Monitoring Requirements

- Patient monitoring is currently most intensive in this period.

- More difficult to monitor here.
- Longer monitoring period.
- Remote/mobile patient.
Example 1: Total Knee Replacement

- 150,000 joint replacements 2005-2006
 - 1.5 Million bed days
- 100,000 hip of knee replacements in 2010
- Postoperative monitoring resources:
 - In-hospital stay of 3-5 days
 - Physiotherapy
 - Clinical appointments
 - Postoperative x-rays
Example 2: Minimally Invasive Surgery

- **Patient “X”**
 - Male
 - Age 69
- **Diagnosed with colorectal cancer.**
- **Co-morbidity:**
 - Diabetes
 - Smoker
- **Laparoscopic resection of cancer.**
 - “Keyhole”
- **Two segments of bowel joined.**
- **Keyhole wounds closed.**
- **Sent home on day 5.**
The Consequence of a Complication

- **Symptoms on Day 7**
 - Tachycardia (HR 120BPM)
 - Body temp 38°C
 - Resp. rate 24
 - Abdominal tenderness

- **Diagnosis**
 - CT scan reveals leak from anastomosis

- **Consequences**
 - Emergency surgery
 - 21-day ITU admission
 - Colostomy bag
Current Monitoring

- Human resource intensive:
 - Visit to GP practice: patient dependent
 - Visit from district nurse: reserved for immobile patients
 - Outpatient follow-up: usually 3 weeks after discharge
 - Clinician: required for any biopsies

- Recovery/Performance assessment is subjective
 - Return to normal activity/performance levels
 - Dietary habits
 - Self-care
 - Exercise/Training schedule
 - Wound care
Current Monitoring

Only a **SNAPSHOT** of a patient’s health
Contemporary Treatment

- Fast-track surgery
- Minimally invasive surgery
- Goal directed recovery
- Aging population
- Patient requests
- Home healthcare wards

There is a need for a more DYNAMIC monitoring process
How Can a Pervasive System Help?

- Quantify recovery status
 - Mobility: Impaired / Recovering / Normal

- Determine normal activity patterns
 - Walking, Sleeping, Reading, Eating & Drinking, Training

- Monitor body physiology
 - Heart rate, Oxygen saturation, Temperature, Metabolism

- Enable safe patient discharge
Body Sensor Networks for Patient Care

eAR Sensor (ear-worn Activity Recognition)

Accelerometer
Activity Recognition Example

Reading Walking slowly Lying down Walking fast Running
Enabling In-body Pervasive Sensing

Challenges:

- What to measure?
- Size
- Biocompatibility
- Data path
- Power supply
Energy Demands

Data Acquisition:

- Collecting a sample of data: joules/sample
- Processing a sample: joules/sample
- Storage: joules/sample/second
- Transmission: joules/sample
- Resolution: bits/sample
- Data rate: bits/second

System Control:

- Configuration command: joules/command
- System maintenance: joules/second
<table>
<thead>
<tr>
<th>Possible Trade-offs</th>
<th>Sensing:</th>
<th>Comm’s:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy source</td>
<td>Human power</td>
<td>Remote power (e.g. NFC)</td>
</tr>
<tr>
<td>Data priority</td>
<td>Low→ Synchronous, low rate, low resolution.</td>
<td>High → Event-driven, high resolution.</td>
</tr>
<tr>
<td>Patient mobility</td>
<td>Low → Daily data downloads, system updates.</td>
<td>High → Autonomous, context aware system-control and adaptive monitoring.</td>
</tr>
</tbody>
</table>