A long lifetime power source
- the radioisotopic battery

Dr Carl Anthony
School of Engineering
University of Birmingham

Presentation at Energy Harvesting 2016
Motivation

- >3 billion litres/day water leaks
- Buried pipe monitoring
- Sensor needs long term power
 - High replacement cost
 - Water pipes in ground for more than 100 years
 - Realistically power source needs to last 20+ years
- Harsh environment
- Maintain integrity of pipe
Power requirement

- Low measurement duty cycle
 - Spot measurements
 - once per day, once per hour
- Sensor nodes require
 - mW whilst transmitting
 - Very low average power 10’s μW
- Ideally: High energy density, low power density
Power source options

- Regenerative
 - Kinetic (vibration, fluid flow)
 - Piezoelectric
 - Electromagnetic
 - Electrostatic
 - Thermal
 - Electrochemical
- Non-regenerative
 - Micro-engines
 - Micro-IC
 - Micro-Fuel Cell
 - Micro-Turbine
 - Radioisotopic
 - Thermal
 - Non-thermal
Power source options - limitations

- Li-ion – can’t be sealed, max 20year lifetime
- Solar power – obviously not an option
- Thermoelectric – very small temperature differences
- Water turbine/flow harvester – integrity of pipe
- Fuel cells – limited lifetime/thermal losses
- Induction from surface – location dependent
- Vibration – location dependent, sporadic
- Radioisotopes?
Radioisotopes

- Same number of protons in their atomic nuclei but **differing numbers of neutrons.**
- Release energy when decay into a more stable form - β, γ radiation
- Decay at different rates
 - half life : Minutes – 1000’s years
 - Opportunity for long term power
- e.g. Uranium-235, radium-226, Carbon-14, Tritium, Americerium-241, Nickel-63, Plutonium-238
Radioisotopic power sources

Advantages relative to conventional batteries

- Very high energy density
- Very long life (potentially) – isotope dependent
- Continuous operation devices
- No (or very few) moving parts
- Very little sensitivity to environmental changes
- High reliability
- Scalable to microns (generally)

Seem ideal !
Uses of Radioisotopes

Smoke detectors – Am241

Self powered emergency signs

Pacemakers 70’s

Batteries - University of Missouri 2009

RTG from Apollo 14 mission to the moon (NASA, 1971)

Pellet of Pu-238 (US Department of Energy)

Jae Wan Kwon, University of Missouri, 2009

NASA – since 1961

University of Missouri 2009

Pacemaker powered by Pu-238 decay (1974)
Non-thermal radiisotopic energy conversion

- **Direct Charge**
 - High Voltage (100kV+)
 - Low Current (< 100nA)

- **Direct conversion**
 - Low voltage (5V), higher current (0.1mA)
 - Semiconductor suffers radiation damage
Indirect conversion (ICRB)

Decay particle → Light → Electricity

How do we produce a phosphor coated radioisotope?
Gaseous Tritium Light Sources (GTLS)

- **Commercially available fishing lures!**
- A transparent glass tube having a thin layer of a scintillating agent coated to its inside walls (normally a phosphor)
- Pressurized Tritium (3H) is injected into the tube which is then sealed at both ends

\[
\text{Tritium } ^3\text{H } \rightarrow ^3\text{He} + \beta^- + \text{anti-neutrino}
\]

- Beta radiation from Tritium can travel 6mm in air, 6μm in water, and will not penetrate the dead layer of skin on humans
GTLS device regulation

- Environmental Protection, England and Wales: The Environmental Permitting (England and Wales) Regulations 2010

- 1000GBq limit for a device made of these sources

- Single ones 20GBq

- If contaminate ground water health consequences of ingesting tritium in the form of tritiated water

- Disposal route depends on amount
Prototype GTLS battery

a) 3D printed casing
b) reflective coating (Au or BaSO$_4$)
c) PV cells and GTLS Capacitor
Testing battery performance

Test circuit for ICRB battery testing
Charge 1\(\mu\)F Al Electrolytic capacitor

\[
p = \frac{1}{2} C (\Delta v)^2 \frac{\Delta t}{\Delta t}
\]
Battery configuration test

- Different GTLS/PV cell configurations investigated
- Harvested power compared

Charging curve
Battery power testing results

Comparison of battery configurations

<table>
<thead>
<tr>
<th>PV cell type</th>
<th>PV cell dimensions (mm)</th>
<th>Reflective coating</th>
<th>GTLSs (mm)</th>
<th>Peak power (nW)</th>
<th>Power (nW/GBq)</th>
<th>Power (nW/cm³)</th>
<th>Power (nW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-Si</td>
<td>2.599 X 3.00 X 2.6</td>
<td>none</td>
<td>12.25 X 3.0</td>
<td>10.2</td>
<td>0.05</td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td>p-Si</td>
<td>2.498 X 1.99 X 2.6</td>
<td>none</td>
<td>14.15 X 3.0</td>
<td>7.7</td>
<td>0.10</td>
<td>0.92</td>
<td>0.63</td>
</tr>
<tr>
<td>a-Si</td>
<td>6.545 X 4.5 X 1.2</td>
<td>gold</td>
<td>10.25 X 3.0 + 2 15 X 3.0</td>
<td>575.1</td>
<td>3.18</td>
<td>123.28</td>
<td>39.08</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.919 X 2.48</td>
<td>none</td>
<td>30.25 X 3.0 + 1 22.5 X 3.0</td>
<td>1606.2</td>
<td>3.06</td>
<td>126.90</td>
<td>35.24</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.349 X 1.38 X 1.2</td>
<td>none</td>
<td>12.15 X 3.0</td>
<td>241</td>
<td>3.79</td>
<td>78.31</td>
<td>25.02</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.349 X 1.38 X 1.2</td>
<td>gold</td>
<td>12.15 X 3.0</td>
<td>250.1</td>
<td>3.93</td>
<td>75.15</td>
<td>25.96</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.349 X 1.38 X 1.2</td>
<td>barium sulfate</td>
<td>12.15 X 3.0</td>
<td>283.6</td>
<td>4.46</td>
<td>72.22</td>
<td>29.44</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.723 X 1.50 X 1.2</td>
<td>gold</td>
<td>24.15 X 3.0</td>
<td>696.9</td>
<td>5.48</td>
<td>114.12</td>
<td>32.13</td>
</tr>
<tr>
<td>a-Si</td>
<td>2.103 X 1.55 X 1.2</td>
<td>none</td>
<td>34.15 X 3.0</td>
<td>786.2</td>
<td>4.36</td>
<td>88.54</td>
<td>24.60</td>
</tr>
</tbody>
</table>

Very low light levels for PV cell operation, low efficiency

- **525 GBq**
- **127 GBq** – a scaled version would produce 2800nW @525GBq (1000GBq limit)
Other research on ICRB’s

<table>
<thead>
<tr>
<th>Battery type</th>
<th>PV cell</th>
<th>Radioisotope</th>
<th>Activity (GBq)</th>
<th>Voltage (V)</th>
<th>Power</th>
<th>Efficiency</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AeroGel</td>
<td>a-Si</td>
<td>Tritium</td>
<td>214,600</td>
<td>-</td>
<td>2mW</td>
<td>1.00%</td>
<td>theory</td>
</tr>
<tr>
<td>AeroGel</td>
<td>AlGaAs</td>
<td>Tritium</td>
<td>118,400</td>
<td>-</td>
<td>2mW</td>
<td>1.80%</td>
<td>theory</td>
</tr>
<tr>
<td>Thin film</td>
<td>m-Si</td>
<td>Nickel 63</td>
<td>-</td>
<td>-</td>
<td>0.92nW</td>
<td>1.53%</td>
<td>theory</td>
</tr>
<tr>
<td>Polymer</td>
<td>Si</td>
<td>Promethium 147</td>
<td>166.5</td>
<td>-</td>
<td>20μW</td>
<td></td>
<td>practical</td>
</tr>
<tr>
<td>GTLS</td>
<td>a-Si</td>
<td>Tritium</td>
<td>24.2</td>
<td>0.24V</td>
<td>2.57nW</td>
<td>0.17%</td>
<td>practical</td>
</tr>
<tr>
<td>GTLS</td>
<td>AlGaAs</td>
<td>Tritium</td>
<td>8.2</td>
<td>>0.78V</td>
<td>74nW</td>
<td>0.98%</td>
<td>practical</td>
</tr>
<tr>
<td>Thin film</td>
<td>AlGaAs/GaAs</td>
<td>Plutonium 238</td>
<td>11.1</td>
<td>0.75V</td>
<td>10μW</td>
<td>0.11%</td>
<td>practical</td>
</tr>
<tr>
<td>GTLS</td>
<td>AlGaAs</td>
<td>Tritium</td>
<td>48.84</td>
<td>1.2V</td>
<td>234nW</td>
<td>0.53%</td>
<td>practical</td>
</tr>
</tbody>
</table>

Buried trials

- Fourteen 14.5x2.5mm GTLS’s
- Two 34.9x13.8mm a-Si PV cells
- 294nW @1.8V at start of testing
- Radioisotopic battery potted in polyurethane in IP55 waterproof casing
- Attached to a buried water pipe
- Cables brought out to monitor battery
Battery performance over time whilst buried on a water pipe
Temperature alters PV cell output
Calculated battery power over time

- Tritium half life 12.3 years
- Need higher starting power for longer life at spec power
- Alternative radioisotope would give more stable power
Conclusions

- Designed and manufactured Indirect conversion Radioisotopic battery (ICRB) using Gaseous Tritium light sources (GTLS) and a-Si PV cells
- Limit on activity 1000GBq
- Highest power produced 1600nW (@525GBq)
- Best efficiency 5.48nW/GBq
- Survived burial
- 1 μW of power after 10 years requires 3.3μW at beginning of life
- Longer lifetime requires longer half life
Acknowledgements

- Robert Walton
- N. Metje, D. Chapman, A. Sadeghioon, M. Ward

This work was partly funded by UKWIR (UK Water industry research) and University of Birmingham

It was also financially supported by EPSRC (Grant No. EPK504191) in conjunction with Innovate UK in a collaborative project including the University of Birmingham, Syrinix Ltd, Severn Trent Water Ltd, Bristol Water PLC and Morrison Utility Services Ltd.
Questions ?