

Energy Harvesting 2015

erc

Peter Harris | P.J.Harris@bath.ac.uk Chris Bowen @Bowen NEMESIS Alicia Kim | @OptimiserAlicia

Energy Harvesting with Bistable Laminates

Stacking sequence for bistability (left)

1.1 Bistability is a property of a system to exist in either of 2 stable states.

flat curing (right)

1.2 We induce bistability by exploiting the difference in the thermal coefficients of expansion of unidirectional carbon fiber pre preg sheets in asymmetric stacks.

1.3 How is energy produced? As the laminate vibrates, the piezoelectric patch is strained, producing electrical energy.

2. Why is bistability useful? The nonlinearity from bistability leads to a broader band response from vibration

E	nergy.								
	14 • Linear 1g Up-sweep	• Linear 1g Up-sweep	 Bistable 1g Up-sweep × Bistable 1g Down-sweep 		Linear		Bistable		
	12 - • Linear 2g Up-sweep	8 -	• Bistable 2g Up-sweep		Mode 2	Mode 3	Mode 1	Mode 2	g-level
mw]	× Linear 2g Down-sweep • Linear 4g Up-sweep • Sweep	7 -	Bistable 2g Down-sweep o Bistable 4g Up-sweep	Peak power [mW]	0.738	0.930	3.19	0.023	1
	 Linear 4g Down-sweep Linear 6g Up-sweep 		 × Bistable 4g Down-sweep • Bistable 6g Up-sweep 	FWHM [Hz]	1.1	2.7	1.9	3.3	
	8 – Linear 6g Down-sweep	<u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>	 5 - Bistable 6g Down-sweep 4 - 3 - ×××××××××××××××××××××××××××××××××××	Peak power [mW]	2.29	3.04	5.06	0.069	2
/er [6 – ⁸⁸ *	y 4 -		FWHM [Hz]	1.4	3.0	3.3	3.5	
Pow		DO 3 -		Peak power [mW]	7.07	10.15	7.14	0.15	4
		2 -		FWHM [Hz]	1.8	3.4	6.6	5.1	
	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 - 🦻 🕺		Peak power [mW]	12.83	20.07	7.3	0.268	6
				FWHM [Hz]	2.1	3.8	8.4	6.6	
	35 40 45 50 Frequency [Hz]	15 20 25 Frequenc	30 35 40 c y [Hz]	All from [1]					

3. What does the design space look like?

This work is supported by the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering, Science and Integrated Systems (NEMESIS).