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A Much of our critical built
Infrastructure is ageing and not
adequately monitored.

A There is a poor understanding of
the performance of infrastructure
during construction and use.

A The CSIC aims to develop a
range of new underpinning
technologies to address the
monitoring and management of
large-scale built infrastructure.

I Wireless Sensor Networks.

I Fibre optic sensors.

I Computer Vision.

I Data Analysis and Modelling.
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Smart Structures

I Talk of the town

Howe smart structures work

.-.,..--a-n’

L —— N

.‘-""-“-m#*"

KEY: I central computers O Wireless sensors «» Sensor nodes

SMART BUILDING

1. Sensors in a building monitor the building’s mowement in response to strong winds or earthquake tremors.

2. Shock absorbers (hydraulic dampers) can then be made to stiffen or relax and heawvy weights (mass dampers) can be
mowved to reduce oscillations in strong winds, or minimise damage in the event of an earthquake.

3. Buildings that detect an earthquake tremor could even warn other buildings nearby of the approach of a shockwawve, so
they could sound an alarm and prepare themselwes accordingly.

SMART BRIDGE

1. Wireless sensors mounted on the bridge monitor wibrations, displacement and temperature. This information then
“hops™ across the network of sensor nodes to a central computer for analysis.

2. If a problem is detected, such as a loose bolt or cable, or the beginning of a crack, a warning can be sent by SMS.

SMART TUNMEL

1. Wireless sensors mounted on the walls of a tunnel monitor displacement, temperature and humidity. This information
then “hops™ across the network of sensor nodes to a central computer for analysis.

2. If a problem with the tunnel lining is detected, appropriate maintemance can be carried out. In future, a smart tunnel
could even use robots to perform some maintenance tasks avtomatically.
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Energy harvesting for ultra-low
power Sensors

A Environmental sensors operating
on scavenged energy.

Sensor operating in remote areas
or harsh environments.

Augment batteries or extend
battery life.

Sensors embedded in low power
distributed sensor networks for
infrastructure monitoring.

Energy harvesting from ambient
mechanical, fluidic and thermal

sources.
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Availability of ambient energy

Energy Source Order of magnitude of potential power density
Solar (direct solar irradiation) 1 0 enw/cm?
Solar (indoor illumination) 10 6 $cm?
Mechanical vibration 1 0 0e6\Wcm3
Human motion 106s toeVIcmMD®0O00bSs
Thermoelectric 10 & $¥cm?
Temperature variation 1 6esWcm?
Radio-frequency 1 0 OnM\g¥cm3
Airflow 1 0 0e6\Wcm3
Acoustic noise 1 0 OM\gcm?3
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Ambient energy 1 rail track vibration
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acceleration: m/s 2

Ambient energy | pipe
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Real-world applications

A Intermittent, irregular and broadband nature of real vibrations.

A Arrayed linear, MDOF or non-linear approaches for vibration energy
harvesting must be considered.

A Increased device complexity for non-linear mechanisms.
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Energy Harvesting T MDOF MEMS approach

Z. J. Wong et al, PowerMEMS 2009.



