Miniaturising Motion Energy Harvesters: Limits and Ways Around Them

Eric M. Yeatman Imperial College London

Inertial Harvesters

- Mass mounted on a spring within a frame
- Frame attached to moving "host" (person, machine...)
- Host motion vibrates internal mass
- Internal transducer extracts power

Available Power from Inertial Harvesters

assume:

- source motion amplitude Y_o and frequency ω
- Proof mass m, max internal displacement z_o

- Peak force on proof mass $F = ma = m\omega^2 Y_o$
- Damper force < F or no movement
- Maximum work per transit $W = Fz_o = m\omega^2 Y_o z_o$
- Maximum power

 $P = 2W/T = M\omega^3 Y_0 Z_0/\pi$

Ref: Mitcheson, P. et al. "Architectures for vibration-driven micropower generators", J. Microelectromechanical Systems 13(3), pp. 429-440 (2004).

Implications for Scaling

- Maximum power $P = m\omega^3 Y_o z_o / \pi$
- For length dimension L, m scales as L³
- Z_o scales as L
- So power scales as L⁴
- Power density falls as size reduces

How much power is this?

Plot assumes:

- Si proof mass (higher densities possible)
- max source acceleration 1g (determines Y_o for any f)

Achievable Power Relative to Applications

Plot assumes:

- proof mass 10 g/cc •
- source acceleration 1g

Possible Power Relative to Batteries

Plot assumes:

- proof mass 10 g/cc
- source acceleration 1g

Power Density

- Depends on geometry: highest P/Vol for travel along long axis
- MEMS devices typically use plate geometry not ideal
- In-plane motion: hard to achieve optimal travel range
- Off-axis travel can be a problem

Imperial College London Implementation Issues: Resonance

Why use resonant device?

Allows use of full internal range for low Y_o

Why not use resonant device?

- For low frequency application, $Y_o > z_o$ likely
- Low resonant frequency hard to achieve for small devices
- Not suitable for broadband or varying source frequency

Imperial College London Implementation Issues: Resonance

Input displacement vs frequency: low frequency range

Transduction: Electromagnetic

Example: Southampton/Tyndall Inst. Advantages:

- Well understood system
- No source voltage needed (with permanent magnets)

Disadvantages

- Limited number of winding turns in MEMS: low voltages
- Low damping forces in low frequency operation

Transduction: Electrostatic

Example: MIT

Advantages:

- No special materials
- Suitable for MEMS scale

Disadvantages

- Needs priming voltage, or electret
- high output voltages typical

Transduction: Piezoelectric

Example: UC Berkeley

Advantages:

- High voltage even at low frequency
- Simple geometries

Disadvantages

- Low coupling coefficient
- integration of material

A Non-Resonant Electrostatic Harvester

- Si proof mass: whole wafer etching
- Polyimide suspension: low stiffness
- Wide frequency range of operation: suitable for body motion
- Self-synchronous: physical contact to charging and discharging terminals
- Size ≈ 12 × 12 × 1.5 mm

assembled generator

detail of moving plate

Imperial College London Non-Resonant Electrostatic Harvester 2

Mass

- Measured output > 2 μ W at 20 Hz excitation
- Wide operating frequency range

Ref: Miao, P. et al. "MEMS inertial power generators for biomedical applications", Microsystem Techn. 12 (10-11), pp.1079-1083 (2006).

Non-Resonant Electrostatic Harvester: Problems

- Si density low reduces *m*
- Travel range limited movement is in short dimension
- Whole wafer etching expensive and limits integration potential
- Output in inconvenient large impulses

Imperial College London External Mass Electrostatic Harvester

- Proof mass rolls on substrate
- Multiple charge-discharge cycles per transit
- No deep etching: fabrication simplicity
- Large mass and internal travel range

But:

- Very low capacitances & capacitance ratios
- Thus, low power for given priming voltage

Schematic illustrating concept

Ref:

M. Kiziroglou, C. He and E.M. Yeatman, "Rolling Rod Electrostatic Microgenerator", IEEE Trans. Industrial Electronics **56**(4), pp. 1101-1108 (2009).

Electrostatic simulation

Rolling mass on prototype device

Overcoming Low Electro-mechanical Coupling: Frequency Up-Converting Piezoelectric Harvester

- External rolling proof mass
- Distributed transduction by series
 of piezo beams
- Proof mass "plucks" beams by magnetic interaction
- Energy extracted as beams ring down: high electrical damping not needed

Ref:

P. Pillatsch, E.M. Yeatman & A.S. Holmes, "Piezoelectric Impulse-Excited Generator for Low Frequency Non-Harmonic Vibrations", Proc. PowerMEMS 2011, Seoul, Nov. 2011, pp. 245-248.

Frequency Up-Converting Piezoelectric Harvester

4 test configurations:

- a₁ = 2.72 m/s²
- $a_2 = 0.873 \text{ m/s}^2$
- m₁ = 0.285 kg
- $m_2 = 0.143 \text{ kg}$

- Operation over a wide frequency range (6:1) demonstrated at higher acceleration
- Effectiveness reasonable for first design
- Power density of 4-13 $\mu W/cm^3$ for lighter proof mass
- Scalable design

Overcoming Low Electro-Mechanical Coupling: Active Interface Circuits

- Piezo devices limited by high output capacitance
- Difficult to match load impedance leads to weak damping factor
- Concept is to synchronously precharge the piezo cell to increase damping force

Re-designing Sensor Architecture for Harvester-Powered Operation

- Harvester power density inherently low for low frequency (e.g. human powered) applications
- Traditional architecture based on separate power and other modules
- Data processing and transmission modules most power intensive
- Solution: new approach to node architecture, mixing modules together

New Architecture

- Harvester connected between sensor output and transmitter
- Sensor acts as priming voltage, harvester as pulse former and energy amplifier
- Output pulses transmitted directly without further processing

Fully Assembled Device

- Input from voltage supply representing output of sensors
- RF frequency determined by size of antenna loop: in this case 350 MHz
- Commercial off-the-shelf TV receiver employed for its broad bandwidth
- Higher frequency (> 1 GHz) will allow antenna loop close to harvester size (5 mm)

Ref:

C. He, M. Kiziroglou, D. Yates and E.M. Yeatman, "A MEMS Self-Powered Sensor and RF Transmission Platform for WSN Nodes", IEEE Sensors **11**(12), pp.3437-3445 (2011).

Overcoming Displacement Limit: Rotational Harvesters

Inertial Harvesters: power is limited by proof mass and travel range:

Maximum power = $m\omega^3 Y_o Z_o / \pi$

Any alternatives?

yes, rotating proof mass: limited motion range not inherent

Ref:

E.M Yeatman, "Energy Harvesting from Motion Using Rotating and Gyroscopic Proof Masses", J. Mechanical Engineering Science **222** (C1), pp. 27-36 (2008).

Rotating Mass Inertial Generator

Example #1: traditional self-winding watch

Rotating Mass Inertial Generator

Example #2: Seiko Kinetic

Rotating mass generator – two possible modes:

- driven by linear motion
- driven by rotating motion

Rotating mass generator – two possible modes:

- driven by linear motion
- driven by rotating motion

Semi-circle design of watch proof masses allows the former:

- Theoretically achievable power is similar to linear motion device: relative direction of mass and frame motion reverses on each half turn
- Advantage is in implementation practicalities.

Rotating mass generator driven by rotating motion

Potential advantage: resonant enhancement

- Allows benefit of "unconstrained" internal amplitude
- Actual constraint is the need for a spring

Proposal : Rotating mass resonant generator

source motion amplitude θ_{o} , frequency ϖ proof mass m, radius R

Achievable power:

 $=\frac{mR^2\theta_o^2\omega^3}{8}\sqrt{\frac{mR^2}{8}}$ \overline{Q} $P_{\rm max}$

Compare: Rotating vs Linear resonant generator

Example: upper limb swinging at 1 Hz

- Linear: $Y_o = 5$ cm
- Rotating: $\theta_0 = 25 \text{ deg}$
- Use mass of 1 g, radius = travel range = 0.5 cm

$$P_{\max} = \frac{mY_o Z_o \omega^3}{\pi} \qquad \text{vs.} \qquad P_{\max} = \frac{mR^2 \theta_o^2 \omega^3}{8} \sqrt{Q}$$

Result: $P_{lin} = 13 \text{ uW}$ $P_{rot} = 0.2 \text{ uW} \sqrt{Q}$ Imperial College London Rotating vs Linear resonant generator

$$P_{lin} = 13 \text{ uW}$$
 $P_{rot} = 0.2 \text{ uW} \sqrt{Q}$

 P_{rot} higher for Q > 4000

Technical Challenge:

 High Q for resonant rotating device requires spring with very high number of turns

Practical Challenge:

• High Q means high drive frequency dependence

Overcoming the Mass Limit

How else can rotating motion be used in inertial generation?

Overcoming the Mass Limit

How else can rotating motion be used in inertial generation?

What about driving the rotation actively?

Proposal: Gyroscopic power generation

Imperial College Gyroscopic power generation

London

Basic principle: for moment of inertia I rotating at ω_s and tipped at ω_p : torque T = $I\omega_s\omega_p$

Gyroscopic power generation

Mechanism: couple the rocking frame to the gyroscopic body by the energy extracting damper (electrostatic...)

For disk spun at $\omega_{\rm s}$ and rocked at $\omega_{\rm o},$ achievable power:

 $P_{gyr} = \frac{1}{4} m R^2 \theta_o^2 \omega_o^2 \omega_s$

Gyroscopic power generation

Opportunity: power output rises with spin speed

Limitation: need to subtract drive power

• Depends on drive speed; optimum drive speed thus determined by Q

Gyroscopic power generation

Net power:

 $P_{gyr} = \frac{\sqrt{2\pi/3}}{3} m R^2 \theta_o^2 \omega^3 \sqrt{Q}$

About 4x resonant rotating (passive) case

Gyroscopic power generation

Gyroscopic power generation

How to implement in MEMS? High quality spinning bearings not really available.

Gyroscopic power generation

How to implement in MEMS? High quality spinning bearings not really available.

- Solution: well known format for MEMS gyros
 - Vibrating gyro

Imperial College London Gyroscopic power generation

- Proposed format: linear vibration on two axes, one for drive, one for pickoff;
- Same as gyro sensor except pick-off extracts energy, not signal

after Fedder et al

Conclusions

- Basic mechanics sets strict limits on achievable power from inertial harvesters
- Ultimate power density drops as devices shrink
- Form factor, resonance and choice of transduction are important considerations
- Rotating harvesters can offer some ways around the basic limits

Thanks:

- Paul Mitcheson, Andrew Holmes, Tzern Toh, Peng Miao, Michalis Kiziroglou, Cairan He, David Yates, Pit Pillatsch
- EPSRC, European Commission

Contact: <u>e.yeatman@imperial.ac.uk</u>

Review Paper: P. D. Mitcheson, E. M. Yeatman, G.K. Rao, A. S. Holmes & T. C. Green, "Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices", Proc. IEEE 96(9), pp. 1457-1486 (2008).