Imperial College London

A SCALABLE PIEZOELECTRIC IMPULSE-EXCITED GENERATOR FOR RANDOM LOW FREQUENCY EXCITATION

Pit Pillatsch*, Eric M. Yeatman and Andrew S. Holmes Department of Electrical & Electronic Engineering, Imperial College London *p.pillatsch10@imperial.ac.uk

NTRODUCTION

- Random, low frequency motion is typical for human movements
- The excitation amplitudes are usually much larger than the displacement limit Z_{l}

EXPERIMENTAL RESULTS

- For these conditions resonant energy harvesters are not ideal
- This poster presents a non-resonant approach for low frequency, large amplitude, non-harmonic vibrations

IMPULSE EXCITATION – PROTOTYPE

- In theory the maximal power output is given as [1]:
 - $P_{max} = \pi f a_0 Z_L m$

(*f*, excitation frequency - a_0 , external acceleration - Z_L , displacement limit - m, mass)

A larger proof mass (steel cylinder) increases the power output

- In theory a higher proof mass and acceleration do have an advantage
- The experiments show that the transduction mechanism is not able to extract all the additional energy stored in the proof mass

- A larger acceleration extends • the bandwidth for which the

- A series of piezoelectric bimorphs constitutes a distributed transduction mechanism
- A permanent magnet, bonded to the tip, snaps to the proof mass as it passes and actuates the beams
- The electromechanical coupling is improved because the beams are left to vibrate at their natural frequency after release
- The maximal power output is lower compared to a tuned resonant device, but operation over a large bandwidth can be achieved
- Perpendicular directions of travel and transducer actuation, segmented transduction and a rolling proof mass are novelties compared to other impulse-excited designs [2], [3]

MEASUREMENT SETUP

- Frequencies from 0.33 Hz to 2 Hz on a rocking table
- $a(t) = a_0 \sin(\omega t)$
- Impedance matched resistive load of 120 k Ω
- 30 nF capacitance for each single beam

- Time to reach the target voltage depends on the excitation
- If the load current is too high, the regulator never reaches the target
- Best regulator efficiency was only around 40%

CONCLUSIONS

- Large range of frequencies (up to six fold in our experiments)
- Transduction mechanism needs to be matched to the design, but this can easily be done by changing the geometry of the beams
- Losses due to power conversion circuitry can not be neglected

4 Configurations with:

- $a_1 = 2.72 \text{ m/s}^2$
- $a_2 = 0.873 \text{ m/s}^2$
- m₁ = 285 g
- $m_2 = 143 g$

- Power density of 3.8 to 13 μ W per cm³ with proof mass m₂
- Design can easily be scaled down

ACKNOWLEDGMENTS

Supported by the Engineering and Physical Sciences Research Council (EPSRC)

REFERENCES

- [1] Mitcheson P D, Yeatman, E M, Rao G K, Holmes A S, Green T C 2008 "Energy Harvesting" from Human and Machine Motion for Wireless Electronic Devices" IEEE
- [2] Galchev T, Aktakka E E, Kim H, Najafi K 2010 "A Piezoelectric Frequency-Increased Power Generator for Scavenging Low-frequency Ambient Vibration" IEEE
- Renaud M, Fiorini P, van Hoof C 2007 "Optimization Of A Piezoelectric Unimorph For [3] Shock And Impact Energy Harvesting" Smart Materials and Structures 16 1125-1135